Junming Ho

Junming Ho

Junming Ho

Senior Lecturer and DECRA Fellow

Contact details

Email: junming.ho@unsw.edu.au


Room 220, Dalton Building

Research Group Website


Biographical Details

Junming is a graduate of the University of Western Australia (B.Sc.) and the Australian National University (B.Sc. (Hons) and PhD). He was the receipient of the Lady James Prize for Physical Science (UWA), University Medal (ANU), Director's Prize (ANU) and Cornforth Medal (RACI). He has held appointments at Yale and the Institute of High Performance Computing in Singapore before commencing his current position in UNSW. ARC DECRA (2017-2020), Lecturer (2017-18), Senior Lecturer (2019-). 

Research Interests

We develop and apply computational methods to help design and develop new catalysts and drug molecules. Topics of particular interest include, but are not limited to organocatalysis, reactivity on surfaces, machine learning in chemistry and modelling solvent effects. Examples of current projects:

  • Large-scale prediction of pKas of organocatalysts and drug molecules
  • Computer-aided design of new catalysts and anion receptors
  • Hybrid quantum mechanics/molecular mechanics simulations of solvation and surface dynamics
  • Development of improved-scaling ab initio composite methods for quantum thermochemistry and kinetics
  • Machine learning prediction of physicochemical properties


Projects can generally be tailored to suit the interest and background of students. We work closely with experimental groups so there would be opportunities for students to gain expertise in both computational and experimental research. Undergraduate, Honours, PhD students and visiting fellows are encouraged to get in touch with me to discuss potential projects and funding opportunities. For most projects, no background in computational chemistry is assumed, and training will be provided.

LATEST (July 2019): A PhD scholarship is currently available to start as soon as possible. Informal enquiries are welcome.

Selected Publications

See google scholar or researchgate for a complete set of publications.
Development of theoretical procedures
  • Chen, J.; Shao Y. Ho, J. Are Explicit Solvent Models more Accurate than Implicit Solvent Models? A Case Study on the Menschutkin Reaction. J. Phys. Chem. A (2019), 123, 5580-5589.
  • Kundi, V.; Ho, J. Predicting Octanol-Water Parititon Coefficients: Are Quantum Mechanical Implicit Solvent Models better than Empirical Fragment-Based Methods? J. Phys. Chem. B (2019), 123, 6810-6822.
  • Ho, J.; Shao, Y.; Kato, J. Do Better Quality Embedding Potentials Accelerate the Convergence of QM/MM models? Molecules (2018) 23, 2466.
  • Ho, J.; Ertem, M. Z.; Calculating Free Energy Changes in Continuum Solvation Models J. Phys. Chem. B (2016), 120, 1319-1329.
  • Ho, J. Are thermodynamic Cycles Necessary for Continuum Solvent Calculation of pKas and Reduction Potentials? Phys. Chem. Chem. Phys. (2015), 17, 2859-2868.
  • Ho, J.; Newcomer, M. B.; Ragain, C. M.; Gascon, J. A.; Batista, E. R.; Loria, P. J.; Batista, V. S. The MoD-QM/MM Structural Refinement Method: Characterization of Hydrogen Bonding in Oxytricha nova G-quadruplex. J. Chem. Theory and Comput. (2014), 10, 5125-5135.
  • Marenich, A. V.; Ho, J.; Coote, M. L.; Cramer, C. J.; Truhlar, D. G. Computational Electrochemistry: Prediction of Liquid-Phase Reduction Potentials. Phys. Chem. Chem. Phys. (2014), 16 15068-15106.
  • Ho, J.; Coote, M. L. A Universal Approach for Continuum Solvent pKa Calculation: Are We There Yet? Theor. Chem. Acc. (2010), 125, 3-21

Applications in chemical synthesis
  • Tran, U.; Oss, G.; Pace, D.; Ho, J.; Nguyen, T. V. Tropylium-Promoted Carbonyl-Olefin Metathesis Reactions. Chem. Sci. (2018), 9, 5145-5151.
  • Ho, J.; Zwicker, V. E., Yuen, K.; Jolliffe, K. A.Quantum Chemical Prediction of Equilibrium Acidities of Ureas, Deltamides, Squaramides and Croconamides. J. Org. Chem. (2017), 82, 10732-10736.
  • Ho, J.; Zheng, J. J.; Meana-Pañeda, R.; Truhlar, D. G.; Ko, E. J.; Savage, P. G.; Williams, C.M.; Coote, M. L.; Tsanaktsidis, J. Chloroform as a Hydrogen Atom Donor in Barton Reductive Decarboxylation Reactions. J. Org. Chem., (2013), 78, 6677-6687. 
  • Ho, J.; Easton, C. J.; Coote, M. L. The Distal Effect of Electron-withdrawing Groups and Hydrogen Bonding on the Stability of Peptide Enolates. J. Am. Chem. Soc. (2010), 132, 5515-5521

Applications in biochemical systems
  • Wong, S.; Zhao, J.; Cao, C.; Wong, C. K.; Kuchel, P.; Hook, J.; Garvey, C.; Smith S.; Ho, J.; Stenzel, M. Just Add Sugar - Carbohydrate Induced Self-Assembley of Curcumin. Nat. Comm. (2019) 10, 1-9.
  • Wang. H.; Leeming, M. G.; Ho, J.; Donald, W. A. Origin and Prediction of Highly-Specific Bond Clevage in the Thermal Activation of Intact Protein Ions. Chem. Eur. J. (2019) 25, 823-834.
  • Pantouris, G.; Ho, J. et al. Nanosecond Dynamics Regulate the MIF-Induced Activity of CD74. Angew. Chem. Int. Ed. (2018), 57, 7116-7119.
  • Ho, J.; Kish, E.; Méndez-Hernández, D. et al. Triplet-triplet Energy Transfer in Artificial Photosynthetic Antennas and Light-Harvesting Proteins. Proc. Nat. Acad. Sci. (2017), 114, E5513-5521.

Surface dynamics and heterogeneous catalysis
  • Chase, H. M.; Ho, J.; Upshur, A.; Thomson, R. J.; Batista, V. S.; Geiger, F. M. Unanticipated Stickiness of alpha-Pinene J. Phys. Chem. A (2017), 121, 3239-3246.
  • Ho, J.; Psicuk, B. T.; Chase, H. M.; Upshur, M. A.; Rudshteyn, B.; Thomson, R. J.; Wang, H.; Geiger, F. M.; Batista, V. S. Sum Frequency Generation Spectroscopy and Molecular Dynamics Simulations Reveal a Rotationally Fluid Adsorption State of alpha-Pinene on Fused Silica. J. Phys. Chem. C (2016), 120, 12578-12589.
  • Mifflin, A.; Velarde, L.; Ho, J.; Psciuk, B.; Negre. C.; Ebben, C.; Upshur, M. A.; Zhou, L.; Strick, B.; Thomson, R.; Batista, V. S.; Wang, H.; Geiger, F. Accurate Line Shapes from sub cm-1 Resolution Sum Frequency Generation Vibrational Spectroscopy of alpha-Pinene at Room Temperature J. Phys. Chem. A (2015), 119, 1291-1302